

A Green Transportation Problem for E-commerce Deliveries

Théo Le Brun^{1,2}, Marie-José Huguet², Sandra U. Ngueveu², Romulus Grigoras¹ ¹OneStock, Toulouse, France ²LAAS-CNRS, Université de Toulouse, CNRS, INP, INSA, Toulouse, France

ROADEF, 28th February 2025

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

2 A Green Transportation Problem for E-commerce Deliveries

2 A Green Transportation Problem for E-commerce Deliveries

3 Experiments

4 Conclusion

3 / 17

 $\mathsf{OneStock}: \ \mathsf{Order} \ \mathsf{Management} \ \mathsf{System} \Rightarrow \mathsf{software} \ \mathsf{to} \ \mathsf{orchestrate} \ \mathsf{online} \ \mathsf{orders}$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Context

 $\mathsf{OneStock}: \mathsf{Order} \mathsf{ Management} \mathsf{ System} \Rightarrow \mathsf{software} \mathsf{ to orchestrate online orders}$

• Orchestration = orders assignment to stock locations

 $\mathsf{OneStock}: \ \mathsf{Order} \ \mathsf{Management} \ \mathsf{System} \Rightarrow \mathsf{software} \ \mathsf{to} \ \mathsf{orchestrate} \ \mathsf{online} \ \mathsf{orders}$

- Orchestration = orders assignment to stock locations
- No routing decision

 $\mathsf{OneStock}: \ \mathsf{Order} \ \mathsf{Management} \ \mathsf{System} \Rightarrow \mathsf{software} \ \mathsf{to} \ \mathsf{orchestrate} \ \mathsf{online} \ \mathsf{orders}$

- Orchestration = orders assignment to stock locations
- No routing decision
- Currently :
 - Several times per hour
 - Online orchestration
 - Hand-made rules

2 A Green Transportation Problem for E-commerce Deliveries

3 Experiments

4 Conclusion

Data : K = Items, S = Stock locations, O = Orders **Decision Variables** : $x_{kso} \in \mathbb{N}$

Minimize Costs $f(x_{kso})$ s.t. Respect stocks $\sum_{o \in O} x_{kso} \leq \text{Stocks}_{ks}$ $\forall k \in K, s \in S$ Fulfill Demands $\sum_{s \in S} x_{kso} = \text{Demand}_{ko}$ $\forall k \in k, o \in O$ Items Assignment $x_{kso} \in \mathbb{N}$ $\forall k \in K, s \in S, o \in O$

Data : K = Items, S = Stock locations, O = Orders **Decision Variables** : $x_{kso} \in \mathbb{N}$

Minimize Costs $f(x_{kso})$ s.t. Respect stocks $\sum_{o \in O} x_{kso} \leq \text{Stocks}_{ks}$ $\forall k \in K, s \in S$ Fulfill Demands $\sum_{s \in S} x_{kso} = \text{Demand}_{ko}$ $\forall k \in k, o \in O$ Items Assignment $x_{kso} \in \mathbb{N}$ $\forall k \in K, s \in S, o \in O$

Literature : order orchestration

- Can be modeled as a Network Design or Transportation Problem
- $\bullet~\mbox{First}$ dedicated paper : [Xu et al., 2009] \rightarrow economic objective

Data : K = Items, S = Stock locations, O = Orders Decision Variables : $x_{kso} \in \mathbb{N}$

Minimize Costs $f(x_{kso}) \rightarrow$ From economic to ecological?s.t. Respect stocks $\sum_{o \in O} x_{kso} \leq$ Stocks $_{ks}$ $\forall k \in K, s \in S$ Fulfill Demands $\sum_{s \in S} x_{kso} =$ Demand $_{ko}$ $\forall k \in k, o \in O$ Items Assignment $x_{kso} \in \mathbb{N}$ $\forall k \in K, s \in S, o \in O$

Literature : order orchestration

- Can be modeled as a Network Design or Transportation Problem
- $\bullet~\mbox{First}$ dedicated paper : [Xu et al., 2009] \rightarrow economic objective

Figure: Ecological costs over the path of a parcel ([CPV Associés et al., 2023])

- Conveying costs : French carrier formula relying on parcel volume
- Packaging costs : proportional to package weight
- \implies we need to know the package used

Data : K = Items, S = Stock locations, O = Orders, **Decision Variables** : $x_{kso} \in \mathbb{N}$

Minimize Costs $f(x_{kos})$ s.t. Respect stocks $\sum_{o \in O} x_{kso} \leq \text{Stocks}_{ks}$ $\forall k \in K, s \in S$ Fulfill Demands $\sum_{s \in S} x_{kso} = \text{Demand}_{ko}$ $\forall k \in k, o \in O$

Items Assignment $x_{kso} \in \mathbb{N}$

 $\forall k \in K, s \in S, o \in O$

Data : K = Items, S = Stock locations, O = Orders, B = Box types **Decision Variables** : $x_{kso} \in \mathbb{N}$

Minimize Costs $f(x_{kos})$ s.t. Respect stocks $\sum_{o \in O} x_{kso} \leq \text{Stocks}_{ks}$ $\forall k \in K, s \in S$ Fulfill Demands $\sum_{s \in S} x_{kso} = \text{Demand}_{ko}$ $\forall k \in k, o \in O$

Items Assignment $x_{kso} \in \mathbb{N}$

 $\forall k \in K, s \in S, o \in O$

Data : K =Items, S =Stock locations, O =Orders, B =Box types **Decision Variables** : $x_{kso} \in \mathbb{N}$, $y_{bso} \in \mathbb{N}$

Minimize Costs $f(x_{kos})$ s.t. Respect stocks $\sum_{o \in O} x_{kso} \leq \text{Stocks}_{ks}$ $\forall k \in K, s \in S$ Fulfill Demands $\sum_{s \in S} x_{kso} = \text{Demand}_{ko}$ $\forall k \in k, o \in O$

Items Assignment $x_{kso} \in \mathbb{N}$ Boxes Assignment $y_{bso} \in \mathbb{N}$ $\forall k \in K, s \in S, o \in O$ $\forall b \in B, s \in S, o \in O$

Data : K =Items, S =Stock locations, O =Orders, B =Box types **Decision Variables** : $x_{kso} \in \mathbb{N}$, $y_{bso} \in \mathbb{N}$

Minimize Costs $f(x_{kos})$ s.t. Respect stocks $\sum x_{kso} \leq \text{Stocks}_{ks}$ $\forall k \in K. s \in S$ Fulfill Demands $\sum x_{kso} = \text{Demand}_{ko}$ $\forall k \in k. o \in O$ SES $V_{boxes} > V_{items} \sum Volume_{by_{bso}} - \alpha \sum Volume_{kx_{kso}} \ge 0 \quad \forall s \in S, o \in O$ $k \in K$ Items Assignment $x_{kso} \in \mathbb{N}$ $\forall k \in K. s \in S. o \in O$ $\forall b \in B, s \in S, o \in O$ Boxes Assignment $V_{hso} \in \mathbb{N}$

GTP-ED

- $\bullet\,$ Fixed Charge Transportation Problem is a particular case of the GTP-ED \Rightarrow NP-hard
- Transportation problem with packing constraints [Flamand et al., 2023]

GTP-ED

- Fixed Charge Transportation Problem is a particular case of the GTP-ED \Rightarrow NP-hard
- Transportation problem with packing constraints [Flamand et al., 2023]

Ecological Transportation Problems

- Multi objective Transportation Problem with ecological cost [Midya et al., 2021], [Shojaie and Raoofpanah, 2018], [Das et al., 2018]
- \Rightarrow focused on the conveying costs

3 questions to investigate

- Are CO2 savings significant compared to current orchestration?
- Is it justified to use such a complex objective function?
- What about the compatibility with economic requirements of retailers?

2 A Green Transportation Problem for E-commerce Deliveries

3 Experiments

4 Conclusion

Instances

- Data origin
 - Industrial data (OneStock and a French carrier): orders, stocks and boxes
 - Randomly generated based on [CPV Associés et al., 2023] : ecological costs
 - Randomly generated to match fashion retailers : items parameters
- Size of the instances :
 - Larger instance : 70 orders, 135 stock locations, 244 items
 - Smaller instances obtained from the larger one

Set-up

• Time Limit 1h, Intel Core i5, 2.4 GHz, RAM 16GB, Julia 1.8, CPLEX 22.1

- $\sim 50\%$ of CO₂ savings
- ⇒ Yes, GTP-ED improves significantly the ecological performance

Figure: Ecological costs of GTP-ED vs OneStock orchestration

An easier ecological objective?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Distance TP-ED :

$\min \sum_{b,s,o} \mathsf{Distance}_{so} y_{bso}$

s.t. previous constraints

13 / 17

Figure: Ecological Costs of GTP-ED vs min distance

Figure: Ecological Costs of GTP-ED vs min distance

Operational relevance (1)

Parcels TP-ED :

$$\min\sum_{b,s,o}y_{bso}$$

s.t. previous constraints

Figure: Ecological Costs of GTP-ED vs min #parcels

AAS-CNRS 'Laboratoire d'analyse et d'architecture des systèmes du CNRS	Experiments	14 / 17

Figure: #Parcels of GTP-ED vs min #parcels (no parcel for CkC orders)

• \sim 120% of #parcels increase

- ~ 120% of #parcels increase
- ⇒ Our ecological and economic objectives are in great tension, unlikely to get the GTP-ED operated in real life in such a context

Figure: #Parcels of GTP-ED vs min #parcels (no parcel for CkC orders)

2 A Green Transportation Problem for E-commerce Deliveries

Contributions

- GTP-ED, a MILP to reduce the ecological footprint of order orchestration
 - A comprehensive ecological function
- Improvement of the industrial orchestration from an ecological point of view
- Highlight of tensions between our CO2 ecological objective and parcel-based economical objective

Contributions

- GTP-ED, a MILP to reduce the ecological footprint of order orchestration
 - A comprehensive ecological function
- Improvement of the industrial orchestration from an ecological point of view
- Highlight of tensions between our CO2 ecological objective and parcel-based economical objective

Limits and future works

- Generalize conclusions to other types of retailers
- Improve the scalability of the MILP
- We need to develop alternative objective functions to simplify the access of ecological data and to reduce the tensions between ecological and economical objectives

CPV Associés, GSV Communication, and RDC Environment (2023).

Commerce en ligne - impacts environnmentaux de la logistique, des transports et des déplacements : état des lieux, outil d'évaluation et pistes de progrès. Report.

Das, A., Bera, U. K., and Maiti, M. (2018).

Defuzzification and application of trapezoidal type-2 fuzzy variables to green solid transportation problem. Soft computing, 22(7):2275–2297.

Flamand, T., Iori, M., and Haouari, M. (2023).

The transportation problem with packing constraints. Computers & Operations Research, 157:106278.

Midya, S., Roy, S. K., and Yu, V. F. (2021).

Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. International Journal of Machine Learning and Cybernetics, 12:699–717.

Shojaie, A. A. and Raoofpanah, H. (2018).

Solving a two-objective green transportation problem by using meta-heuristic methods under uncertain fuzzy approach.

Journal of Intelligent & Fuzzy Systems, 34(1):1-10.

Xu, P. J., Allgor, R., and Graves, S. C. (2009).

Benefits of reevaluating real-time order fulfillment decisions. Manufacturing & Service Operations Management, 11(2):340–355.

Colissimo formula

$$D_2 \times \left(\frac{E_v \times V}{V_{t2}} + (E_p - E_v) \times \frac{m}{C}\right)$$

Objective function

$$\min \sum_{o \in O} \sum_{s \in S} \left[\sum_{k \in K} x_{kos} (CS_{ks} + CR_{ks} + \frac{(E_{pos} - E_{vos})}{C_{os}} m_k) + \sum_{r \in R} y_{osr} \left(CP_r + CH_{os} + \frac{(E_p - E_v)}{C} M_r + V_r (\frac{E_{t1os}}{V_{mt1os}} + D_{2os} \frac{E_{vos}}{V_{t2os}} + \frac{D_{3os}}{D_{m3os}} \frac{E_{t3os}}{V_{mt3os}} + \frac{E_{t4os}}{V_{mt4os}}) \right) \right]$$

Conclusion