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Cost sharing indicator

Package delivery system

• Service to a set of customers → cost

• Economies of scale

Vehicle routing problem
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Package delivery system

• Service to a set of customers → cost

• Economies of scale

Question :
How to divide the total cost amongst the users ?
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Package delivery system
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Cost sharing indicator

Package delivery system

• Service to a set of customers → cost

• Economies of scale
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Cooperative games and Shapley value : definition

Cooperative game
• A set of player N : customers

• Value function v : S ⊂ N → v(S)

• v(S) : Cost of servicing the players in S
• Popular cost-sharing mechanism : Shapley value
• Can be derived from 4 axioms

• Efficiency : distributes the total cost
• Anonymity : doesn’t depend on player numbering
• Null player : players inducing no additional cost ⇒ null share of cost
• Linearity : works well with sum of games
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Cooperative games and Shapley value : definition

Cooperative game
• A set of player N : customers
• Value function v : S ⊂ N → v(S)

• v(S) : Cost of servicing the players in S

Shapley value :

∅

• Average over all possible orders :

• φ(v , i) = 1
n!
∑

π∈Π(N) ∆(Sπ
i , i)

• NP-Hard to compute → approximation
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Approximation with sampling

Shapley value : φ(v , i) = 1
n!
∑

π∈Π(N)∆(Sπ
i , i)

Shapley value as an expectation : φ(v , i) = Eπ[∆(Sπ
i , i)]

Classical approximation method :

• Expectation → average over samples

• Sampling a set of permutations Π

• φ(v , i) ≈ 1
|Π|

∑
π∈Π∆(Sπ

i , i)
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Stratified sampling

Example : estimating mean human size

• Stratified sampling = dividing the samples into groups ; averaged
separately

• Example : mean size = (mean man size + mean woman size) /2

• Stratification leads to less bias due to the sampling !

Law of total expectations : E[θ̂] = P(A) E[θ̂|A] + P(Ā) E[θ̂|Ā]

Stratified estimator : P(A)
|ΘA|

∑
θ∈ΘA

θ + P(Ā)
|ΘĀ|

∑
θ∈ΘĀ

θ
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Stratification events for the Shapley value

Shapley value : φ(v , i) = 1
n!
∑

π∈Π(N)∆(Sπ
i , i)

Groups :

• What is the position of player i in permutation π ? → |N| groups

• Is player j before or after player i ? → 2 groups

How to use and combine all this groups/stratifications ?
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Flexible stratification with optimization

Problem : we can’t stratify according to 2 events independently.

• Estimate E[θ|A ∩ B] and E[θ|A ∩ B̄] and E[θ|Ā ∩ B] and E[θ|Ā ∩ B̄]
→ 2n estimates

• Estimate E[θ|A] and E[θ|Ā] and E[θ|B] and E[θ|B̄]
→ How to combine them ?
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Flexible stratification with optimization
New paradigm :

• We are estimating the expectation E[θ] with a weighted average of
sample

• Each sample σ has a weight wσ

• If we know the proba P(A) of event A : we want
∑

σ∈ΣA
wσ = P(A)

We obtain a linear system of equations :

W (A) =
∑
σ∈ΣA

wσ = P(A) ∀A

Modeling with a QP :

min
wσ

∑
A
(W (A)− P(A))2 + ε

∑
σ

(wσ)
2

s.t.
∑
σ

wσ = 1
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Shapley value 😇 vs core 😈

Example : all length = 1 ; vehicule capacity = 2

• Best value = 5 ; Shapley value = 5/3

• Best 2 size coalition : 3 ; Shapley value = 3/2

• Core can be non-empty but not contain the Shapley value
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Thank you for your attention

Package
https://github.com/TwistedNerves/shapley_approximation

Paper :
Approximating the Shapley value with sampling : survey and new stratification
techniques, Francois Lamothe, Sandra U. Ngueveu
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